

SPEC: Seeing People in the Wild with an Estimated Camera [SICCV OCTOBER 11-17]

Muhammed Kocabas^{1,2}, Chun-Hao Paul Huang¹, Joachim Tesch¹, Lea Müller¹, Otmar Hilliges², Michael J. Black¹

¹ MPI for Intelligent Systems, Tübingen, ² ETH Zurich

Motivation

To reconstruct human bodies given a single image, existing methods assume

- 1. Intrinsic: weak perspective projection large focal length f=5000
- 2. Extrinsic: no camera rotation w.r.t. the world

These assumptions lead to below errors in real life images

Camera Geometry

To solve this problem, we estimate the camera parameters denoted in (b) from a single image.

(a) Camera geometry in SOTA methods (IWP-Cam)

(b) Camera geometry of SPEC

Method

- CamCalib takes the whole input image as input and predicts camera parameters. Horizon line (green) shows the predicted camera rotation.
- SPEC takes a cropped bounding box as input and extracts image features using a CNN backbone. Predicted camera parameters from CamCalib are concatenated with image features to estimate SMPL body parameters.
- Camera parameters are also taken into account when computing a loss between the projected 3D joints and ground truth.

Datasets

Pano360 - to train CamCalib

SPEC-MTP

Evaluation only - Subjects are from multiple views a reference Camera parameters are the global _orientation presented in reference

SPEC-SYN

Training and evaluation - Synthetic images (AGORA) - cameras are randomly sampled

Results

Evaluation Metrics

- MPJPE (mean per joint error)), PA-MPJPE are the commonly used metric.
- These metrics exists specifically because current methods reconstruct bodies in camera coordinates.
- Instead, we propose variants of MPJPE and PVE that compute the error in world coordinates without the need of camera information and dub them W-MPJPE and W-PVE.

Results on SPEC-MTP

Ablation Experiments

Methods	W-MPJPE	PA-MPJPE	W-PVE	Methods	W-MPJPE	PA-MPJPE	W-PVE
GraphCMR [36]	175.1 / 166.1	94.3	205.5 / 197.3	HMR*	128.7 / 96.4	55.9	144.2 / 111.8
SPIN [35]	143.8 / 143.6	79.1	165.2 / 165.3	$HMR^* + c$	120.4 / 84.2	54.0	135.3 / 98.8
PartialHumans [52]	158.9 / 157.6	98.7	190.1 / 188.9	$HMR^* + c + f$	118.3 / 85.1	54.0	132.8 / 99.7
I2L-MeshNet [†] [44]	167.2 / 167.0	99.2	199.0 / 198.1	$\frac{1}{1} \text{HMR}^* + c + f + R^c$	77.2 / 77.2	55.3	93.8 / 93.8
HMR* [28]	142.5 / 128.8	71.8	164.6 / 150.7	SPEC	74.9 / 74.9	54.5	90.5 / 90.5
SPEC	124.3 / 124.3	71.8	147.1 / 147.1		1		ı

Error Breakdown w.r.t. the Camera Parameters

Qualitative Results

